Enrollment No:-____

Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 55C04ACC1 Subje Course Name: M.Sc. (Mathematics) Semester: IV

Subject Name: Advanced Complex Analysis

Date: 19/5/2015 Marks: 70 Time: 10:30 TO 01:30

Instructions:

- 1) Attempt all Questions in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

SECTION-I

Q-1 a) Define index of γ . (02)b) State open mapping theorem. (02)c) Define zero of function of multiplicity *m*. (02)d) State Morera's theorem. (01)Q-2 a) Let $\gamma: [0,1] \to \mathbb{C}$ be a closed rectifiable curve. Suppose $a \notin \{\gamma\}$ then prove (07)that $\frac{1}{2\pi i} \int_{V} \frac{dz}{z-a}$ is an integer. b) Let *G* be a region and $f: G \to \mathbb{C}$ is analytic function on *G*. Suppose (07) a_1, a_2, \dots, a_m are the zero's of f in G. Suppose γ is a closed rectifiable curve on G such that γ does not pass through any zero and $n(\gamma, w) = 0 \forall w \in \mathbb{C} - G$. Then prove that $\frac{1}{2\pi i} \int_{Y} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{m} n(y, a_k)$

OR

- Q-2 a) Let γ and σ are two rectifiable paths in \mathbb{C} with $\gamma(1) = \sigma(0)$ then prove (07) that $n(\gamma + \sigma, a) = n(\gamma, a) + n(\sigma, a)$ where $a \notin \{\gamma\} \cup \{\sigma\}$.
 - b) Let γ be a rectifiable curve. Suppose \emptyset is a complex valued function (07) defined on $\{\gamma\}$. If $f_m(z) = \int_{\gamma} \frac{\emptyset(w)dw}{(w-z)^m} dw, z \notin \{\gamma\}$ for $m \ge 1$ then prove that f_m 's are analytic on $G = \mathbb{C} \{\gamma\}$ and $f_m'(z) = m f_{m+1}(z)$.
- Q-3 a) State and prove Argument Principal.
 - b) Let G be an open set in C and suppose f: G → G be analytic. Let γ be a (07) closed rectifiable curve in G such that n(γ, w) = 0∀ w ∈ C G. Then for a ∈ G {γ} then prove that ¹/_{2πi} ∫_γ f(z)/_{z-a} dz = n(γ, a) f(a).

OR

(07)

Q-3	Let f be analytic within and on the circle $\{z: z - a < R\}$. Then prove	(07)
	that $f'(a) = \frac{1}{\pi r} \int_0^{2\pi} Re f(a+r e^{i\theta}) e^{-i\theta} d\theta, \ 0 < r < R.$	

b) State and prove Arzela – Ascoli's theorem. (07) SECTION-II

Q-4 a) Let f be an entire function and f(z) = u + iv. Suppose u = Re f(z) is (02) bounded. Then prove that f reduce to a constant.

- b) State Reimann mapping theorem. (02)
- c) State Montel's theorem.(02)d) Define convex function.(01)
- Q-5 a) Suppose f and g be meromorphic functions on a neighbourhood of (07) $\overline{B}(a, R)$ which have no zeros or poles on the circle $\gamma = \{z: |z - a| = R\}$. Let Z_f, Z_g, P_f and P_g are the number of zeros and poles of f and g lying inside γ counted according to their multiplicity and if |f(z) + g(z)| < |f(z)| + |g(z)| for z on γ . Then prove that $Z_f - P_f = Z_g - P_g$.
 - b) Prove that a function f is convex on (a,b) if and only if for each triplet (07) points s, t, u with $s \le t \le u \frac{f(t) - f(s)}{t - s} \le \frac{f(u) - f(t)}{u - t}, \ a < s < t < u < b$.
- Q-5 a) Using Rouche's theorem prove fundamental theorem of algebra. (07)
 b) A differentiable function *f* is convex if and only if *f'* is increasing. (07)
- Q-6 a) Suppose $Re z > 0 \forall k \ge 1$ then $\prod_{k=1}^{\infty} z_k$ is convergent if and only if (07) $\sum_{k\ge 1} \log z_k$ is convergent.
 - b) Let f be analytic within and on disk $|z| \le \rho$. Suppose $0 < r < R < \rho$ then (07) prove that $f(r e^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 r^2)f(Re^{i\phi})}{R^2 2Rr\cos(\theta \phi) + r^2} d\phi$.
 - OR
- Q-6 a) If all zero's of a polynomial p(z) lies in a half plane then prove that the (07) zero's of p'(z) also lies in the same half plane.
 - b) State and prove Weirstrass factorization theorem. (07)

